Mathematical Finance Dylan Possamaï

Recall 2

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a filtration \mathbb{F} .

Continuous-time martingales

- 1. When is an \mathbb{R} -valued process $M := (M_t)_{t \in [0,T]}$ said to be an (\mathbb{F}, \mathbb{P}) -super-martingale? And an (\mathbb{F}, \mathbb{P}) -sub-martingale?
- 2. Let X be a right-continuous (\mathbb{F}, \mathbb{P}) -super-martingale. Which are some inequalities satisfied by X?
- 3. Let X be an \mathbb{F} -adapted process. Can you state one condition under which X has a \mathbb{P} -modification Y that has left- and right-limits everywhere, and there is a countable subset $S \subset [0, \infty)$ for which Y_t is right-continuous at every $t \notin S$?
- 4. Let X be an \mathbb{F} -adapted process. Can you give some conditions under which X has a $cadlag \mathbb{P}$ -modification?
- 5. Let \mathbb{F} be right-continuous. When does an (\mathbb{F}, \mathbb{P}) -martingale have a $c a dl a g \mathbb{P}$ -modification? When does an (\mathbb{F}, \mathbb{P}) sub-martingale have a $c a dl a g \mathbb{P}$ -modification?

Convergence results

- 1. Can you give a convergence result when
 - (a) X is a non-negative right-continuous (\mathbb{F}, \mathbb{P}) -super-martingale?
 - (b) X is a \mathbb{P} -uniformly integrable (\mathbb{F}, \mathbb{P})-super-martingale?
 - (c) X is a \mathbb{P} -uniformly integrable (\mathbb{F}, \mathbb{P})-martingale?
- 2. Can you state a convergence result when $(X^n)_{n\in\mathbb{N}}$ is a sequence of càdlàg (\mathbb{F},\mathbb{P}) -martingales? Can you prove it?

Martingales and simple process

- 1. Let X be an \mathbb{R} -valued process and ξ an \mathbb{F} -predictable simple process bounded by 1. Can you state the inequality satisfied by $\int_0^t \xi_s dX_s$ when
 - (a) X is an (\mathbb{F}, \mathbb{P}) -martingale such that $X_t \in \mathbb{L}^2(\mathbb{R}, \mathbb{F}, \mathbb{P})$ for any $t \ge 0$?
 - (b) X is an (\mathbb{F}, \mathbb{P}) -martingale?
- 2. Let $(X^n)_{n \in \mathbb{N}}$ be a sequence of $c adl a g(\mathbb{F}, \mathbb{P})$ -martingales, and X a process such that $E^{\mathbb{P}}[|X_t^n X_t|] \to 0$, as $n \to \infty$, what can you say about X? Can you prove it?

Everything local

- 1. What is an (\mathbb{F}, \mathbb{P}) -local martingale?
- 2. Can you show that any (\mathbb{F}, \mathbb{P}) -local martingale is (\mathbb{F}, \mathbb{P}) -locally integrable?
- 3. Can you prove that a non-negative (\mathbb{F}, \mathbb{P}) -local super-martingale X which is such that in addition X_0 is \mathbb{P} -integrable is an (\mathbb{F}, \mathbb{P}) -super-martingale?

The Doob-Meyer decomposition

- 1. Let X be measurable stochastic process. What does it mean that X is of class (\mathbb{F}, \mathbb{P}) -(D)? And of class (\mathbb{F}, \mathbb{P}) -(DL)?
- 2. Let X be a càdlàg (\mathbb{F}, \mathbb{P}) -martingale. When is X of class (\mathbb{F}, \mathbb{P}) -(DL)? When is X of class (\mathbb{F}, \mathbb{P}) -(D)?